REPORT ON

GEOTECHNICAL INVESTIGATIONS

FOR THE PROPOSED

Degree College

In

Ballia (Begusarai) Block Campus, Begusarai

Your Letter No.- BSEIDC/Tech/1960(PART)/2018-8505, Dated - 08.12.2021

Submitted to The Chief Engineer BSEIDC, Patna

December, 2021

BIHAR FOUNDATION CONSULTANTS

[A unit of Baidyanath Foundation Consultants Pvt. Ltd.] Having an NABL Accredited / ISO 9001: 2015 Certified Laboratory

Ganga Darshan Apartment, Flat No. 403.

Patna - 10

[e-mail : bifcon.pat@gmail.com, Phone No: + 91612 - 2272826]

Degree College in Ballia (Begusarai) Block Campus, Begusarai

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit : Baidyanath Foundation Consultants Pvt. Ltd.]

PN - 211223

CONTENTS

<u>Sl.No.</u>	Description	<u>Page No.</u>
1	Introduction	1
2	Field Work	1
3	Laboratory Test	2
4	Presentation of Test Results	2
5	Soil Stratification	2
6	Foundation Analysis	2
7	Recommendations	3-4

Appendix

[Containing Figures and Tables]

- A. Bore Holes Location Map
- B. Field Test Observations & Laboratory Test Results
- C. Graph of Grain size Analysis
- D. Triaxial shear / Direct shear strength test curves
- E. `e-log p' Curves from Consolidation Tests
- F. Sample calculation of pile
- G. Copy of Work Oder
- PN 211223

INTRODUCTION

The subsoil investigations reported herein were taken up (vide W.O. No. BSEIDC/Tech/1960(PART)/2018-8505 Dated - 08.12.2021 to find out the nature of subsoil at the site* of the proposed construction and to recommend the capacity and type of its foundation. After certain tests on the soil, as detailed below, the desired recommendations have been made on **page 3-4** of this Report.

2. FIELD WORK

The fieldwork consisted of sinking bore holes, collecting soil samples and conducting the necessary field tests.

2.1. Boring

Taking guidance from IS: 1892, 150 mm diameter bore holes were sunk at locations shown in the bore hole location map.

2.2 Sampling

2.2.1 Undisturbed Soil Samples

Open drive samplers of 100-mm diameter and about 450-mm length were used for obtaining undisturbed samples of cohesive soils. The collection, sealing, labeling and transportation of the samples to the laboratory were done as per the IS guide-lines.

2.2.2 Disturbed Soil Samples

Disturbed soil samples were collected at suitable intervals of depth (not more than 2.5 m) and at all depths of change in the nature of the subsoil. These samples were sealed in polythene bags with proper identification labels.

2.3 Field Tests

2.3.1 Standard Penetration Tests (SPT)

These tests were conducted as per IS: 2131 – 1963. The depth interval between two consecutive tests was 1 to 1.5 m. The tests were located in between the levels at which undisturbed soil samples were collected.

^{*}It was learnt from Sri Subodh Ji, [Mob. No. 7004172431], J.E. Begusarai that there being no land available in the Ballia Block Campus, the soil test had to be done in the campus of G.D.R. H.S. School, Ballia.

Report on Sub Soil Investigations for the Proposed Construction of Degree College in Ballia (Begusarai) Block Campus, Begusarai

3. LABORATORY TESTS

Some or all of the following laboratory tests, as necessary, were done on the collected soil samples. Representative soil samples were selected for this from the different soil strata encountered during boring. The tests were performed as per the relevant Indian Standard Codes of Practice.

- (a) Natural moisture content
- (b) Bulk density
- (c) Grain size analysis (using sieves and / or hydrometer)
- (d) Specific gravity of soil solids
- (e) Atterberg's limit tests (liquid, plastic and shrinkage limits)
- (f) Shear Tests :
 - [I] Triaxial compression test (unconsolidated undrained), generally for fine- grained soils
 - [II] Unconfined compression tests, only on cohesive soils
 - [III] Direct shear tests, generally for coarse-grained soils
- (h) Other tests as and when required.

4. PRESENTATION OF TEST RESULTS

The field and laboratory test results are given in the Appendix B.

5. SOIL STRATIFICATION

The results of field tests in three bore holes sunk at the site [vide Location Sketch in App. A] and the results of laboratory tests conducted on the collected soil samples indicate that the soil stratification at the site is as describe below.

The subsoil in all BH's is sandy silty clay / silty clay [type CI/CL] up to up to the investigated depth of 10.5 m bgl. But in BH 2 and 3 it is sandy clayey silt [type ML] from about 4.5 m to 7.5 m in BH 2 and 7.5 m to 10.5 m depth in BH 3.

Ground water table was struck at about 3.40 m to 3.50 m depth below GL in December, 2021 It is subject to seasonal variations.

6. FOUNDATION ANALYSIS

The safe capacity of foundation of any type and size may be determined on the basis of the soil data given in this Report by using the standard methods of foundation design and following the relevant Indian Standard Codes. Report on Sub Soil Investigations for the Proposed Construction of Degree College in Ballia (Begusarai) Block Campus, Begusarai

7. RECOMMENDATIONS

The design of the foundation for the proposed structure depends on the nature of both [a] the subsoil and [b] the structure.

The subsoil in all BH's is sandy silty clay / silty clay [type CI/CL] up to up to the investigated depth of 10.5 m bgl. But in BH 2 and 3 it is sandy clayey silt [type ML] from about 4.5 m to 7.5 m in BH 2 and 7.5 m to 10.5 m depth in BH 3.

Ground water table was struck at about 3.40 m to 3.50 m depth below GL in December, 2021 It is subject to seasonal variations.

Considering the above facts,

- 1. The subsoil up to about 8 m depth is soft or loose. Hence placement of shallow foundation may not be economical in the present case. However the capacities of footing placed at depths of 2 m to 4.5 m have been calculated.
- 2. Alternatively, plane piles of lengths 4.0 m to 10.0 m with shaft diameters 0.25 m, 0.30 m, 0.40 m and 0.50 m may be provided, using casing pipes where ever a need arises.

By way of example, the values of safe capacities of

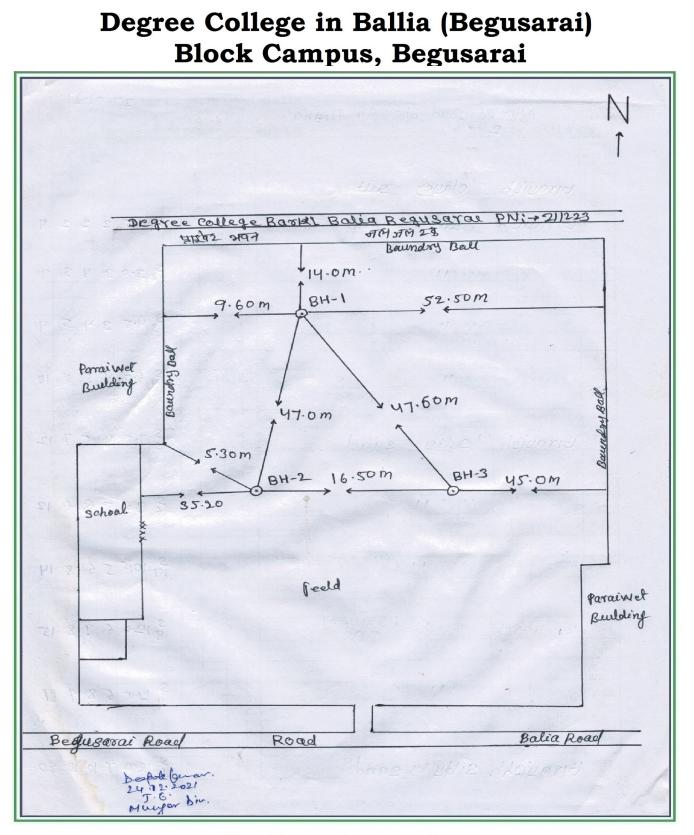
[1] Shallow foundations and [2] Plane piles of the above mentioned sizes and depths have been calculated (vide Samples of Calculations in Appendix F) and the safe capacities are given below in Tables 1 and 2 respectively.

Depth (m)	Width	Net allowa	ble bearing pressu	are (t/m ²)	Maximum expected
below Ground Level	(m)	Strip footing	Square footing	Raft footing	settlement (mm)
	2	5.1	6.1		75
2.0	3	4.9	5.8		75
	10			5.4	100
	2	6.0	7.1		75
2.5	3	5.6	6.7		75
	10			6.2	100
	2	6.9	8.2		75
3.0	3	6.4	7.6		75
	10			6.9	100
	2	7.2	8.5		75
3.5	3	6.6	7.8		75
	10			7.0	100
	2	7.5	8.9		75
4.0	3	6.8	8.1		75
	10			7.1	100
	2	7.8	9.3		75
4.5	3	7.0	8.4		75
	10			7.2	100

Table 1:	Allowable Net Bea	ring Pressures [q _{na}]	and Settlements Expected [s]
----------	-------------------	-----------------------------------	------------------------------

Pile length [m]	(SUBJECT	Safe Capacities [tonnes] (SUBJECT TO CHECKING FOR SLENDERNESS RATIO*) for Piles of diameters (m):												
0 1 1	0.25 m	0.30 m	0.40 m	0.50 m										
4.0	3.0	3.6	5.1	6.8										
5.0	3.7	4.5	6.3	8.1										
7.0	4.9	6.2	9.1	11.8										
9.0	6.2	8.0	12.1	16.7										
10.0	7.0 9.1 13.8 19.2													

Table 2.Safe Capacities of Plane Piles[Factor of safety = 2.5 in skin friction and 3 in bearing]


*For a preliminary checking of the slenderness ratio, the modulus of subgrade reaction (k) may be estimated from the following empirical relation given in IS: 2950-1981 (Second Revision) Table 1. k $(kN/m^3) = 240 c$, where c (kN/m^2) is the value of cohesion of the soil at the concerned depth.

Notes:

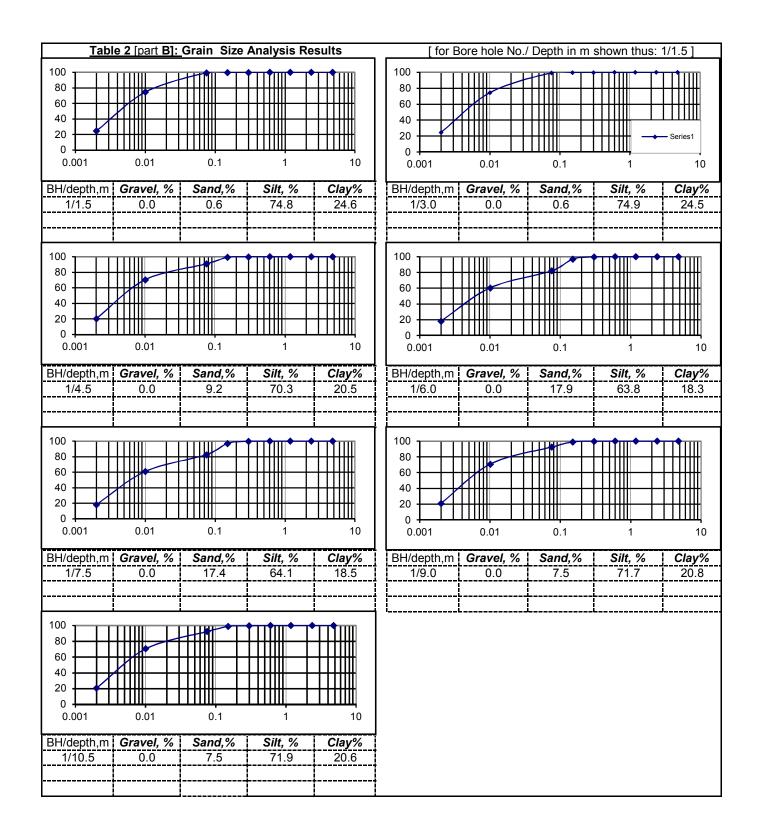
- 1. If a subsoil condition much different from those reported herein is met with during foundation trenching or piling, suitable steps should be taken.
- 2. If the depth of a shallow foundation is below the water table, dewatering of the foundation trench has to be done, and its side walls of may have to be suitably supported at the time of the construction of the foundation.
- 3. In case a basement is being provided, its base and side walls have to be safeguarded against the likely ingress of ground-water.
- 4. If concreting for a pile has to be done under water, DMC and tremie method of concreting should be adopted.
- 5. As per the provisions of the IS Code, an appropriate number of piles must be subjected to routine load tests to check the veracity of the above recommended values of the safe capacities of piles.

For Bihar Foundation Consultants

(Prof. C.N. Sinha, Dr.-Ing., FIE) Chief Consultant.

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit : Baidyanath Foundation Consultants Pvt. Ltd.]

PN - 211223

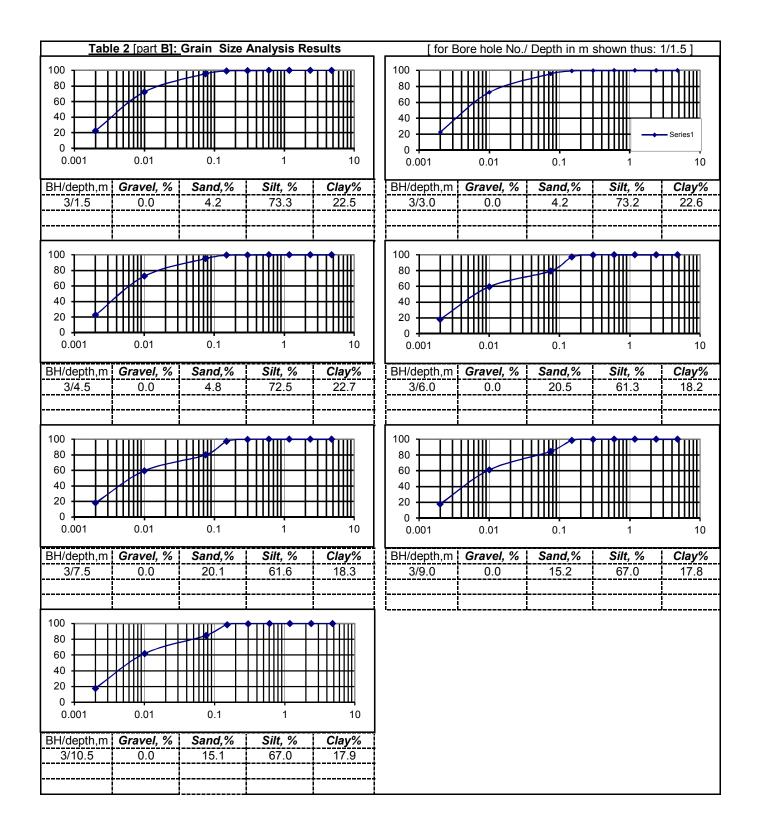

Appendix - A

NAME O	F WORK	: Sub soil In	vestigation for C/O				BORING	FINISH D	ATE : 24.	12.2021		WATER	TABLE	: 3.50 m b	gl	
Degree	College	in Ballia (Be	egusarai) Block Campus, Begusarai				BORING	METHOD	: Rotary							
BORE H	OLE NO. :	: 1	Site Incharge - Mukesh Singh				TERMINA	ATION DE	PTH : 10.	5 m		RECORD	ON	: 24.12.	2021	
GL (m)		SPT 'N' Value	Visual Description of Soil with IS Classification	Dept	h(m)	(ix,%	(gm/cm3)	Natural Moisture Content (%)	ity		Shear Test		Compression Index ($C_{\rm c}$)
Depth Below GL (m)	Sample No.	observation			1	Thickness (m)	Liquid Limit	Plastic Limit	Plasticity Indix,%	Bulk Density (gm/cm3)	tural Moist	Specific Gravity	Type of Test	Cohesion, c kg/cm2)	Friction Angle, ϕ°	mpression
Del	Sar	Obsr.		from	to	Thi	Liq	Pla	Pla	Bul	Nat (%)	Spe	Typ	Col kg/	Fric ϕ°	Ĉ
1.0				0.0												
1.5	S1	5	Greyish silty clay, CL			3.0	32.4	23.3	9.1	1.95	29.3	2.70		0.25	3.0	
2.5						010										
3.0	S2	6			3.0					1.96	28.6	2.70		0.30	3.6	0.154
4.0				3.0												
4.5	S3	5					34.3	22.3	12.0	1.95	29.3	2.70		0.25	3.0	0.157
5.5			Greyish sandy silty clay, CL			4.5										
6.0	S4	3	Greyish sandy sity day, CL			4.5				1.94	29.8	2.69		0.15	2.0	
7.0																
7.5	S5	4			7.5		29.2	15.1	14.1	1.94	29.7	2.70		0.20	2.5	
8.5				7.5												
9.0	S6	5	Greyish silty clay, CL			3.0				1.95	29.3	2.70		0.25	3.0	
10.0			Greyisti siity day, GL													
10.5	S7	8			10.5					1.98	27.4	2.70		0.40	4.6	

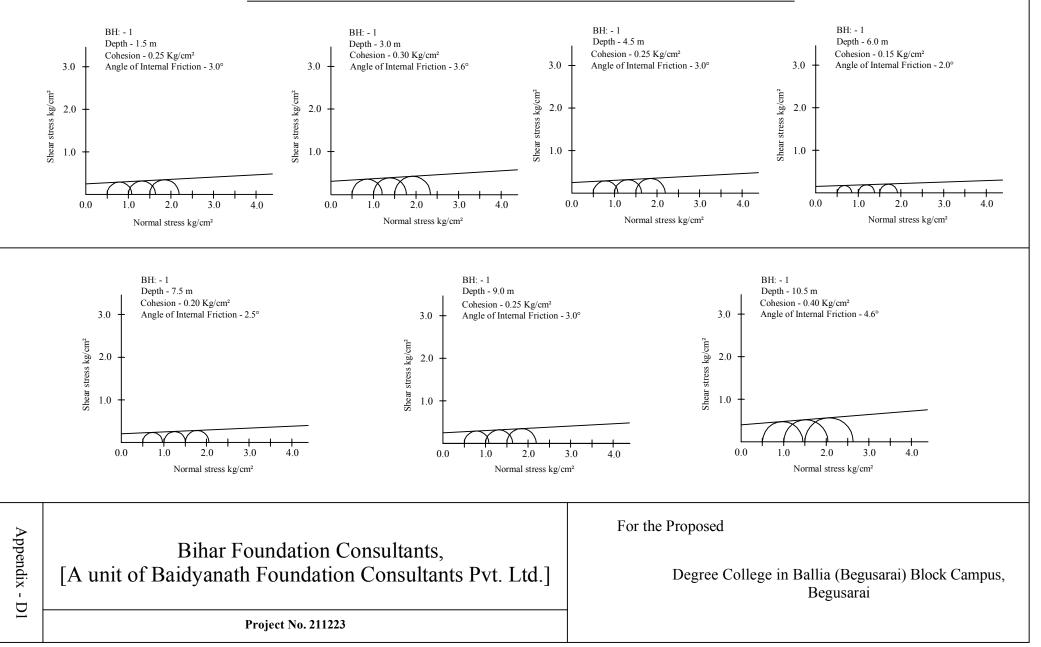
NAME O	F WORK	: Sub soil In	vestigation for C/O				BORING	FINISH D	ATE : 24.	12.2021		WATER	TABLE	: 3.40 m b	gl	
Degree	College	in Ballia (Be	egusarai) Block Campus, Begusarai				BORING	METHOD	: Rotary							
BORE H	OLE NO. :	2	Site Incharge - Mukesh Singh				TERMIN	ATION DE	PTH : 10.	5 m		RECORE	ON	: 24.12.	2021	
GL (m)		SPT 'N' Value	Visual Description of Soil with IS Classification	Depth(m)					x,%	gm/cm3)	Natural Moisture Content (%)	vity		Shear Te		Compression Index (C _c)
Depth Below GL (m)	Sample No.	observation				Thickness (m)	Liquid Limit	Plastic Limit	Plasticity Indix,%	Bulk Density (gm/cm3)	tural Moistu	Specific Gravity	Type of Test	Cohesion, c kg/cm2)	Friction Angle, ϕ°	npression
Det	Sar	Obsr.		from	to	Thi	Liq	Pla	Pla	Bul	Nat (%)	Spe	Тур	Col kg/i	Fric ¢°	Col
1.0				0.0												
1.5	S1	6	Greyish sandy silty clay, Cl			3.0				1.96	28.6	2.70		0.30	3.6	
2.5			Croyion bandy only only, or			0.0										
3.0	S2	7			3.0		36.0	24.3	11.7	1.97	28.0	2.70		0.35	4.1	0.151
4.0			Greyish silty clay, Cl	3.0		1.5										
4.5	S3	6	Oregisti sing day, or		4.5	1.5				1.96	28.6	2.70		0.30	3.6	0.154
5.5				4.5												
6.0	S4	4	Greyish sandy clayey silt, ML			3.0	30.7	26.0	4.7	1.94	28.9	2.66		0.05	13.5	
7.0						5.0										
7.5	S5	5			7.5					1.94	28.9	2.66		0.06	14.6	
8.5				7.5												
9.0	S6	7	Greyish sandy silty clay, CL			3.0	29.2	16.9	12.3	1.97	27.9	2.70		0.35	4.1	
10.0			Gregish sandy sity day, CL			5.0										
10.5	S7	9			10.5					1.99	26.6	2.70		0.44	5.0	

NAME O	F WORK	: Sub soil In	vestigation for C/O				BORING	FINISH D	ATE : 25.	12.2021		WATER TABLE : 3.50 m bgl				
Degree	College	in Ballia (Be	egusarai) Block Campus, Begusarai				BORING	METHOD	: Rotary							
BORE H	OLE NO.	3	Site Incharge - Mukesh Singh				TERMINA	ATION DE	PTH : 10.	5 m		RECORD	ON	: 25.12.	2021	
GL (m)		SPT 'N' Value observation	Visual Description of Soil with IS Classification	Dept	Depth(m)				ix,%	(gm/cm3)	Natural Moisture Content (%)	ity		Shear Te	-	Compression Index (C _c)
Depth Below GL (m)	Sample No.					Thickness (m)	Liquid Limit	Plastic Limit	Plasticity Indix,%	Bulk Density (gm/cm3)	tural Moist)	Specific Gravity	Type of Test	Cohesion, c kg/cm2)	Friction Angle, ϕ°	mpression
De	Saı	Obsr.		from	to	Thi	Liq	Pla	Pla	Bul	Naj (%)	Sp	Typ	kg/	Fric ϕ°	Ö
1.0				0.0												
1.5	S1	4	Greyish silty clay, Cl			3.0	36.1	24.3	11.8	1.94	29.7	2.70		0.20	2.5	
2.5																
3.0	S2	6			3.0					1.96	28.6	2.70		0.30	3.6	
4.0			Greyish silty clay, CL	3.0		1.5										
4.5	S3	5	Oregistri sing diay, OL		4.5	1.5	32.0	22.3	9.7	1.95	29.3	2.70		0.25	3.0	
5.5				4.5												
6.0	S4	4	Greyish sandy silty clay, CL			3.0				1.94	29.7	2.70		0.20	2.5	
7.0						0.0										
7.5	S5	6			7.5					1.96	28.6	2.70		0.30	3.6	
8.5				7.5												
9.0	S6	9	Greyish sandy clayey silt, ML							1.94	28.6	2.65		0.08	15.4	
10.0			Greyish sandy clayey sill, IVIL			3.0										
10.5	S7	11			10.5		29.3	26.6	2.7	1.94	28.4	2.65		0.10	15.6	

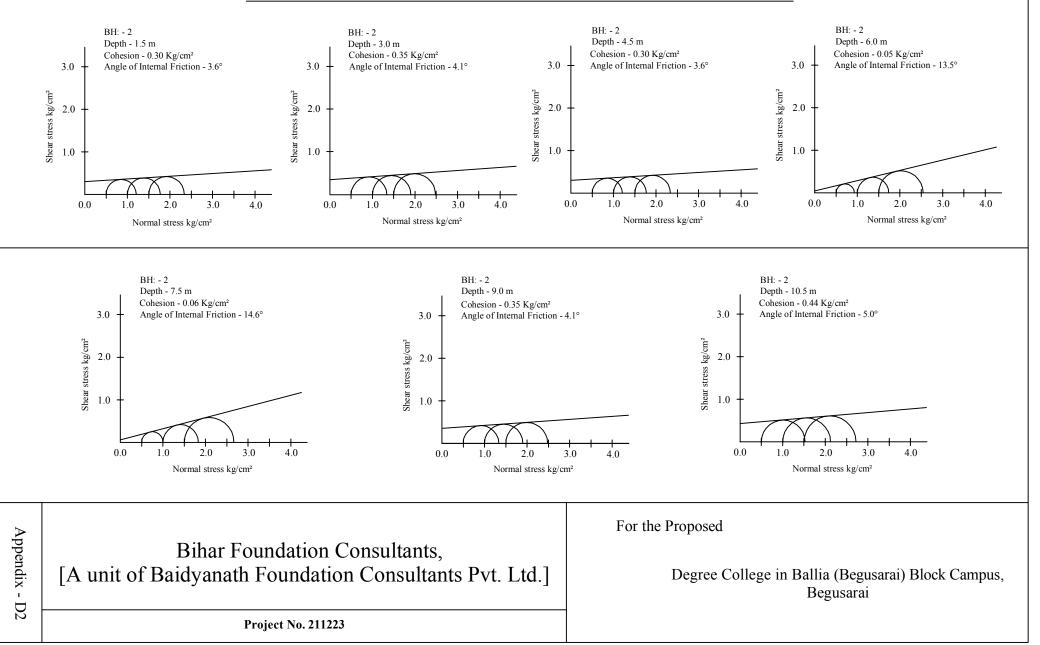
Report on sub-soil investigation for the proposed Degree College in Ballia (Begusarai) Block Campus, Begusarai



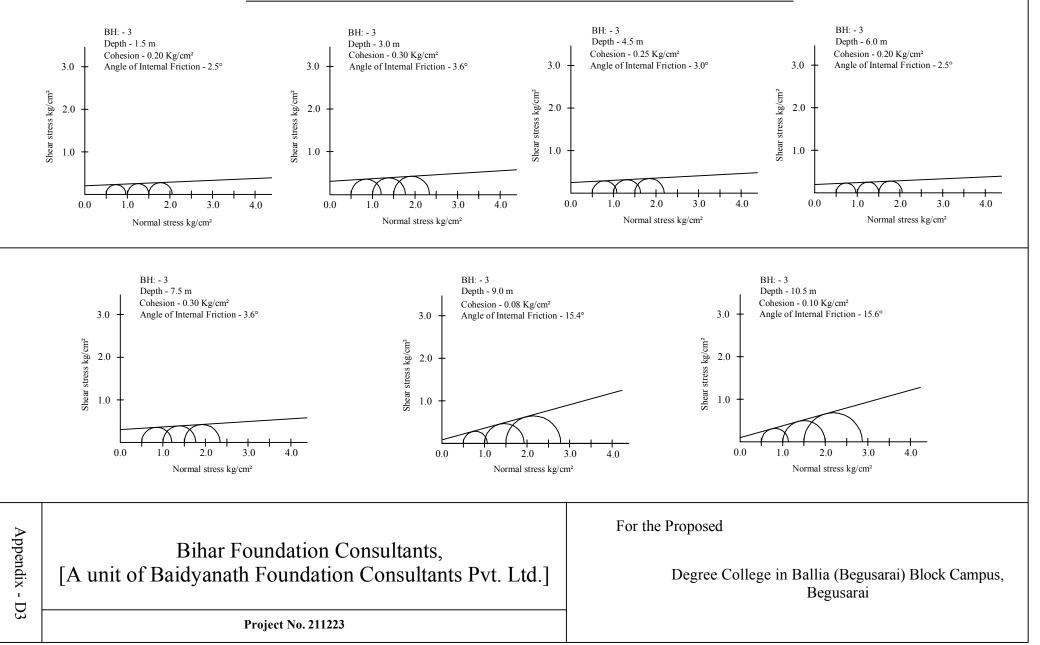
Report on sub-soil investigation for the proposed Degree College in Ballia (Begusarai) Block Campus, Begusarai

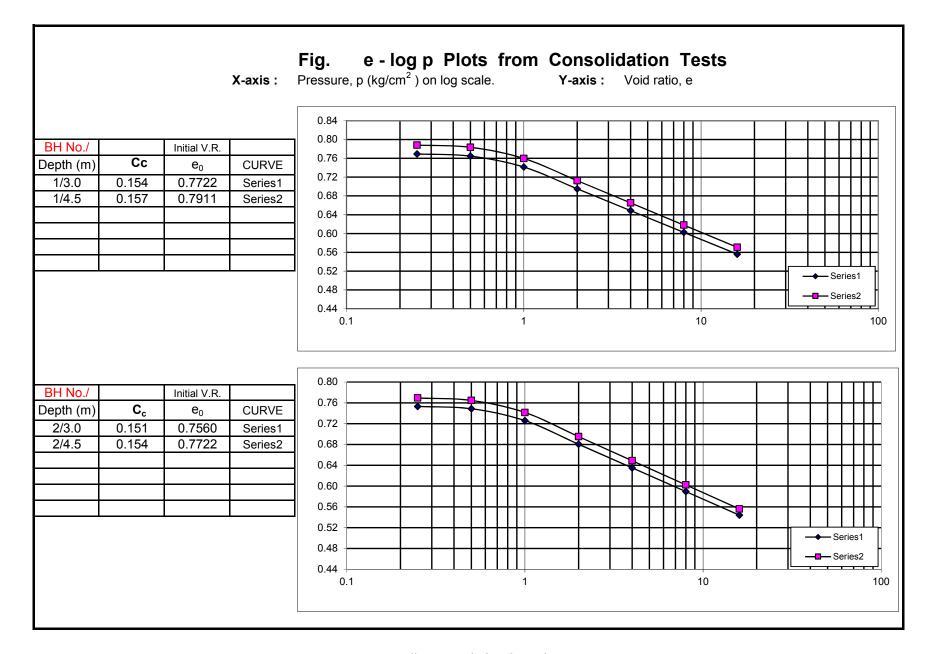

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit : Baidyanath Foundation Consultants Pvt. Ltd.,]

Report on sub-soil investigation for the proposed Degree College in Ballia (Begusarai) Block Campus, Begusarai



Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit : Baidyanath Foundation Consultants Pvt. Ltd.,]


TRIAXIAL / DIRECT SHEAR TEST PLOTS


TRIAXIAL / DIRECT SHEAR TEST PLOTS

TRIAXIAL / DIRECT SHEAR TEST PLOTS

Report on SubSoil Investigations for the proposed Degree College in Ballia (Begusarai) Block Campus, Begusarai

PN - 211223

Report on Sub Soil Investigations for the proposed Degree College in Ballia (Begusarai) Block Campus, Begusarai

SAMPLE CALCULATION OF BEARING CAPACITY OF SHALLOW FOUNDATION

The determination of the **net safe bearing capacity**, **q**_{ns}, is done on the basis of the shear failure criterion after dividing the value of the **net ultimate bearing capacity** q_{nf} , calculated as described below, by a suitable factor of safety. The net soil pressure, q s, for a given permissible settlement is then calculated as explained in the next section. The lower of the two values, q_{ns} and q_{s} , thus determined is taken as the allowable bearing capacity of the soil.

1. Shear Failure Criterion :

The **net ultimate bearing capacity** q_{nf} (t/m²) of a shallow foundation of breadth B (m) and depth D (m) is given as per IS:6403-1981 (Sec.5.1.2) by the following equation :

 $q_{nf} = c N_c s_c d_c I_c + q (N_q - 1) s_q d_q I_q + 0.5 \gamma B N_\gamma s_\gamma d_\gamma I_\gamma w$ where $c = cohesion (t/m^2)$

 γ = unit weight of subsoil (t/m³) [submerged unit weight, γ' , is taken where so applicable]

q = effective surcharge (t/m²) = γ D

 N_c , N_γ , N_q = bearing capacity factors, which are functions of ϕ , the angle of internal friction of the soil. s_c , s_q , s_γ = shape factors d_c , d_q , d_γ = depth factors

related to cohesion, surcharge and density of subsoil respectively I_c , I_q , I_{γ} = inclination factors

w = water table factor (=
$$0.5$$
 to 1.0) depending on the depth, D_w of water table [vide Table below]

The bearing capacity factors (N's) are functions of ϕ , the angle of internal friction of the soil. The values of these factors are found for general shear failure by referring to standard tables. If subsoil conditions are such as to lead to local shear failure, the values of these factors are found for a reduced value of angle of internal friction (ϕ ') given by the equation : tan $\phi' = 0.67$ tan ϕ . The value of cohesion is also reduced to c' = 0.67 c.

s _c =	1.3 1+0.2B/L 1	$d_c = 1+0.2 (N\varphi)^{0.5} D/B$	D _w at	G.L.	Fou'dn.Level
s _q =	1.2 1+0.2B/L 1	$d_q = d_{\gamma} = 1$ for $\varphi < 10^{\circ}$	w =	0.5	1
\mathbf{s}_{γ} =	0.8//0.6 1-0.4B/L 1	$d_q = d_{\gamma} = 1 + 0.1 (N \varphi)^{0.5} D/B$ $\varphi > 10^{\circ}$	Int	terpolation	between
FOR	sq.// O Rect. STRIP	I_c , I_q , $I_\gamma = 1$ for vertical load	the	ese values	is linear.

The values of the other factors in the above equation for usual conditions are as tabulated below :

In the present case, the representative values of cohesion \mathbb{C} and angle of internal friction (ϕ) may be obtained from the soil data given earlier. Full submergence of the soil has been assumed. The safe bearing capacity, q_{ns} has been obtained by dividing q_{nf} by a safety factor, 3.

One example of calculation of safe bearing capacity for a certain shape, depth and width of a footing is given in **Table A** on the next page. The net safe bearing capacity for the footing is entered in the last column of Table A. Calculations for other depths and widths of footings are done similarly.

The value of net safe bearing capacity (q_{ns}) calculated for each set of values of B and D is used for calculating the consolidation settlement s as explained in Sec. 2 below.

2. Settlement Criterion for Foundation on cohesive soil.

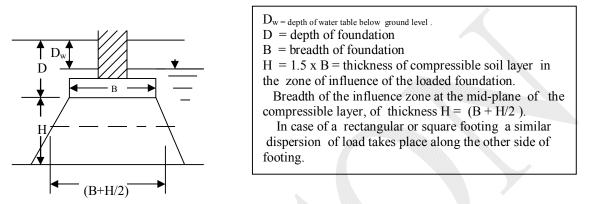
As per IS:8009(Part I)-1976, Sec. 9.2.2.2, the settlement s (in mm) is given by the equation :

 $s = [1000 \text{ H } C_c \log (1 + \Delta p/p_o)] / (1 + e_o) \lambda$

H = thickness (in m) of the compressible layer

- C_c = compression index of the soil
- e_0 = initial void ratio at mid-height of compressible soil layer = its m/c (m) x sp. Gravity
- p_0 = initial effective pressure at mid-height of the layer (t/m²)
- Δp = pressure increment at the mid-height of the layer due to the foundation (t/m²).
- λ = correction factor

where


Report on Sub Soil Investigations for the proposed Degree College in Ballia (Begusarai) Block Campus, Begusarai

If there are different layers with different compression indices and void ratios, s is calculated for each one of these and then added together to get the settlement.

The pressure increment at any plane due to the footing load may be calculated by assuming the dispersion of load at a slope of 1 horizontal to 2 vertical. Hence the load applied over a width B of a foundation (vide the Fig. below) is spread at a depth H/2 below it over a width (B + H/2).

A correction factor $\lambda = 0.80$ is used as per IS Code to find the corrected settlement. If this value of corrected s is within the permissible limit specified in the Code, the corresponding value of q_{ns} is also the net allowable bearing capacity q_{na} . If not, trials give the desirued value of q_{na} . One example of this settlement analysis is given below the **Table B** in Sec. 3.

If $D_w > (D + 1.5 \text{ B/2})$, $p_0 = \gamma$ (D+1.5 B/2) t/m², otherwise, $p_0 = \gamma D_w + (\gamma - 1) (D - D_w + H/2) t/m^2$

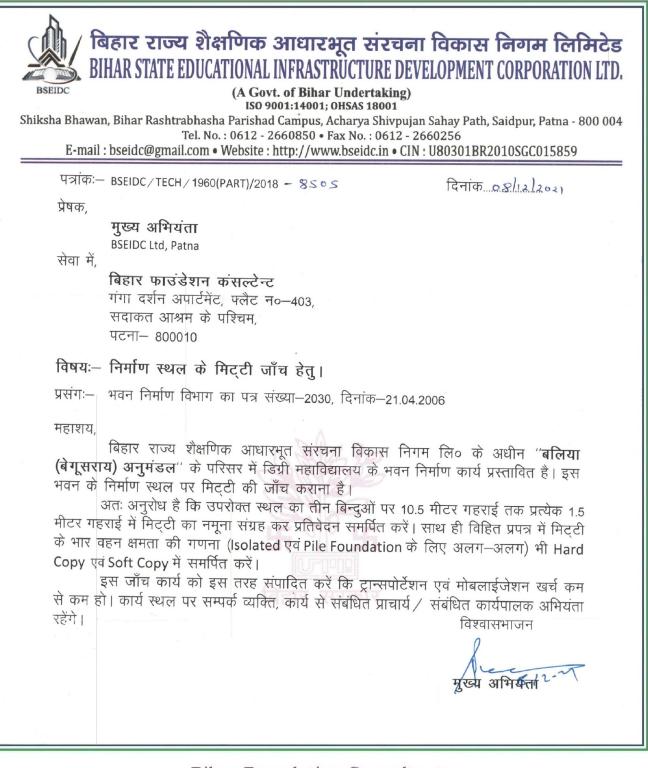
3. SAMPLE CALCULATION

Shape of		F.S.=	γ, t/n	n ³ =	c =	φ =	Nc =	Nq =	$N_{\gamma} =$	
Found	lation:	STRIP	TRIP 3 1.9		1.94	2.1	2.5	5.76	1.25	0.20
			dq =							
D [m]	B [m]	dc	dg	с	q	Term	Term	Term	qnf	qnf /F
2	2	1.21	1	2.1	1.94	14.64	0.49	0.19	15.32	5.11

The net safe bearing capacity for the footing is to be seen in the last column of the above Table A. This value is checked for settlement as shown below.

		-	Fable	в <u>С</u>	<u>alculat</u>	<u>ion of S</u>	ettlem	<u>ent</u>	
m =	0.297	Gs =	2.7	eo =	0.8019	Cc =	0.154	Dw =	0
Depth	Width	qnf /F	ро	н	∆p	log (1+	S [mm]	λ s mm	Remarks
D [m]	B [m]	t/m ²	t/m ²	m	t/m ²	∆p/po)	mm	mm	
2.0	2.0	5.1	3.3	3.0	2.9	0.3	70.7	56.5	OK

Hence the **net allowable bearing pressure** for a strip footing of width 2.0 m and depth 2.0 m below ground level will be 5.1 t/m².


The calculations for footings of other sizes and depths are done similarly

Calculations of Capacity of Plane Pile for the proposed

Degree College in Ballia (Begusarai) Block Campus, Begusarai

				Base								ampus, E ses 6.3.1.1		2)			
				Dase	su on	13.2311	(i ait i					, in t/m ² and			iction (d ^o)	
						A	ما م										
WHEN	Pile diameter, D	(m)=		0	.25	Area of	•	ase, Ap	. ,					-	-	3.14 x D =	
								area of pile		t with soi	-	-				contact with pil	
In CLAY:	Skin friction in c	lay, Qs				End bear		$A_p c_p N_c$	С,			Skin frictio				K =	1.5
			= C.				where I	N _c =9				=.	End bearing				
where Reduction factor, $\alpha\beta$ epends on c, as given in Fig. 2											where P	= overburden					
of Annex.	B of the above	e IS Co	de:291	1												rom the IS Code	
			-	~	<u> </u>			ctor of sa				^Max'm pern	nissible P[t/m		15 to 20 2	X pile diamet	
	nate capacity	-						on, f _s =				=	••	to	5	- I Sub	t/m².
Safe capa	acity of pile, G	2st =	(Qs /f _s	+ Qb	/t _b)		beari	$ng, f_b =$	3.0				3.525	to	4.7	vm.	
			1	T	1	1	1		_			0.1/2		<i>a</i> ·			
Depth of	Soil type	~		α	φ	L 1	p = γ x τ	P _{tip}		issible	A =	Qs' (for	Qs =	Qb	Qu	Qsf	Pile
soil layer		Ysub	C 2	۳ ۱	Ψ	t		=∑p	P _{tip}	P _{mid}	jxt	1 layer)	ΣQs'			[runded off]	Length
(m)		t/m ³	t/m ²	<u> </u>		[m]	t/m ²	t/m ²	t/m ²	t/m ²	m ²	l t	t	t	t	tonnes	m
0.0-0.5	silty clay	0.04	2.00	1.00	0.50	0.5	0.00	0.00	0.0	0.0		dered due to					0.5 2.0
2.0-4.0	silty clay silty clay	0.94 0.94	2.00 2.30	1.00		1.5 2.0	1.41 1.88	1.41 3.29	1.4 3.3	0.7	1.18 1.57	2.41 3.88	2.41 6.29	1.11 1.32	3.51 7.60	3.0	4.0
4.0-5.0	sandy silty clay	0.95	2.50	1.00		<u>1.0</u>	0.95	4.24	3.5	3.5	0.79	2.18	8.47	0.86	9.32	3.7	5.0
5.0-7.0	sandy clayey silt	0.94	0.53	1.00		2.0	1.88	6.12	3.5	3.5	1.57	2.88	11.34	0.98	12.33	4.9	7.0
7.0-9.0 9.0-10.0	sandy clayey silt sandy clayey silt	0.94 0.94	0.68	1.00		2.0 1.0	1.88 0.94	8.00 8.94	3.5 3.5	3.5 3.5	1.57 0.79	3.26 1.84	14.60 16.44	1.12 1.18	15.72 17.62	6.2 7.0	<u>9.0</u> 10.0
0.0-10.0	Sandy Claycy Sitt	0.04	0.00	1.00	10.00	1.0	0.04	0.04	0.0	0.0	0.75	1.04	10.44	1.10	17.02	1.0	10.0
				Qb	for ϕ		Q b for	-									
Depth,d	γsub	¢٥	* N _y	*	' N _q	# Q b	С	# Q b									
4.0	0.95	3.00	0.24	1	.31	0.21	2.50	1.10									
5.0	0.95	13.85	2.24		.51	0.21	0.53	0.23									
7.0	0.94	14.80	2.57	3	.87	0.68	0.68	0.30									
<u>9.0</u> 10.0	0.94 0.94	<u>15.50</u> 15.60	2.85 2.89		<u>.13</u> .17	0.73	0.88	0.39 0.44									
10.0	0.94	15.00	2.09	4	. 17	0.74	1.00	0.44									
							<u> </u>				 						
							-										
							<u> </u>				<u> </u>						
			I	L			I		I	I	I	1			1	1	

Degree College in Ballia (Begusarai) Block Campus, Begusarai

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit : Baidyanath Foundation Consultants Pvt. Ltd.]

PN - 211223

Appendix - G